
https://qiriro.com/epe2165/

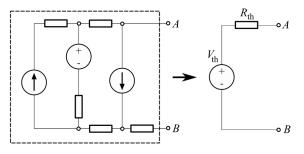
Circuit models for an amplifier

Kizito NKURIKIYEYEZU, Ph.D.

Readings

- Section 1.5 (pages 23-32)
- Example 1.3 on page 25
- Table 1.1. on page 28
- Section 1.5.5 on page 29

¹Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition. ²Bold reading section are mandatory. Other sections are suggested but not required readings


Kizito NKURIKIYEYEZU, Ph.D.

Circuit models for an amplifier

May 18, 2022 1 / 6

Why circuit models?

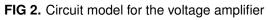
- A conceptual model is a representation of a system and is used to communicate a set of concepts¹
- model is the description of component's terminal behavior and ignores internal operation and components design (Fig. 1)

FIG 1. Thevenin model of a circuit²

Any black box containing resistances only and voltage and current sources can be replaced by a Thévenin equivalent circuit consisting of an equivalent voltage source in series connection with an equivalent resistance.

¹https://en.wikipedia.org/wiki/Conceptual model ²https://en.wikipedia.org/wiki/Th%C3%A9venin%27s theorem Kizito NKURIKIYEYEZU. Ph.D.

Voltage amplifier model


- Voltage-controlled with source v_s with a gain A_{vo}, an input resistance R_i and an output resistance R_o
- Using the voltage-divider rule, *v_o* is represented by Equation (1)

$$v_o = V_{vo} v_i \frac{R_L}{R_L + R_o} \tag{1}$$

Thus, the voltage gain can be expressed by Equation (2)

$$A_{v}\equiv rac{v_{o}}{v_{i}}=A_{vo}rac{R_{L}}{R_{L}+R_{o}}$$

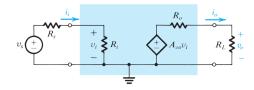


FIG 3. Voltage amplifier with input signal source

(2)

- From Equation (2), the optimum gain is achieved when the output resistance R_o should be much smaller than the load resistance *RL*.
- when designing an amplifier circuit in which R_L is known to vary over a certain range, R_o should be much smaller than the lowest value of R_L .
- An ideal voltage amplifier is one with $R_o = 0$.
- Equation (2) shows that when $R_L = \infty$, then $A_v = A_{vo}$. Thus A_{vo} is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain.
- When specifying the voltage gain of an amplifier, one must also specify the value of load resistance R_L at which this gain is measured or calculated.
- If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain A_{vo}.

- From Equation (2), the optimum gain is achieved when the output resistance R_o should be much smaller than the load resistance *RL*.
- when designing an amplifier circuit in which R_L is known to vary over a certain range, R_o should be much smaller than the lowest value of R_L .
- An ideal voltage amplifier is one with $R_o = 0$.
- Equation (2) shows that when $R_L = \infty$, then $A_v = A_{vo}$. Thus A_{vo} is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain.
- When specifying the voltage gain of an amplifier, one must also specify the value of load resistance R_L at which this gain is measured or calculated.
- If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain A_{vo}.

- From Equation (2), the optimum gain is achieved when the output resistance R_o should be much smaller than the load resistance *RL*.
- when designing an amplifier circuit in which R_L is known to vary over a certain range, R_o should be much smaller than the lowest value of R_L .
- An ideal voltage amplifier is one with $R_o = 0$.
- Equation (2) shows that when $R_L = \infty$, then $A_v = A_{vo}$. Thus A_{vo} is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain.
- When specifying the voltage gain of an amplifier, one must also specify the value of load resistance R_L at which this gain is measured or calculated.
- If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain A_{vo}.

- From Equation (2), the optimum gain is achieved when the output resistance R_o should be much smaller than the load resistance *RL*.
- when designing an amplifier circuit in which R_L is known to vary over a certain range, R_o should be much smaller than the lowest value of R_L .
- An ideal voltage amplifier is one with $R_o = 0$.
- Equation (2) shows that when $R_L = \infty$, then $A_v = A_{vo}$. Thus A_{vo} is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain.
- When specifying the voltage gain of an amplifier, one must also specify the value of load resistance R_L at which this gain is measured or calculated.
- If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain *A*_{vo}.

- From Equation (2), the optimum gain is achieved when the output resistance R_o should be much smaller than the load resistance *RL*.
- when designing an amplifier circuit in which R_L is known to vary over a certain range, R_o should be much smaller than the lowest value of R_L .
- An ideal voltage amplifier is one with $R_o = 0$.
- Equation (2) shows that when $R_L = \infty$, then $A_v = A_{vo}$. Thus A_{vo} is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain.
- When specifying the voltage gain of an amplifier, one must also specify the value of load resistance *R*_L at which this gain is measured or calculated.
- If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain *A*_{vo}.

- From Equation (2), the optimum gain is achieved when the output resistance R_o should be much smaller than the load resistance *RL*.
- when designing an amplifier circuit in which R_L is known to vary over a certain range, R_o should be much smaller than the lowest value of R_L .
- An ideal voltage amplifier is one with $R_o = 0$.
- Equation (2) shows that when $R_L = \infty$, then $A_v = A_{vo}$. Thus A_{vo} is the voltage gain of the unloaded amplifier, or the open-circuit voltage gain.
- When specifying the voltage gain of an amplifier, one must also specify the value of load resistance *R*_L at which this gain is measured or calculated.
- If a load resistance is not specified, it is normally assumed that the given voltage gain is the open-circuit gain *A*_{vo}.

$$v_i = v_s \frac{R_i}{R_i + R_s} \tag{3}$$

- Equation (3) shows that in order not to lose a much of the input signal in coupling the signal source to the amplifier input, the input resistance R_i must be much greater than the resistance of the signal source R_s , i.e., $Ri \gg R_s$
- When designing an amplifier circuit in which the source resistance vary over a certain range, *R_i* should be much greater than the largest value of Rs.
- An ideal voltage amplifier is one with $R_i = \infty$. In this ideal case both the current gain and power gain become infinite
- The overall voltage gain (A = vo/vs) is obtained by combining Equation (2) and Equation (3) as shown in Equation (4)

$$\frac{V_o}{V_s} = A_{V_v o} \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o}$$

$$v_i = v_s \frac{R_i}{R_i + R_s} \tag{3}$$

- Equation (3) shows that in order not to lose a much of the input signal in coupling the signal source to the amplifier input, the input resistance R_i must be much greater than the resistance of the signal source R_s , i.e., $Ri \gg R_s$
- When designing an amplifier circuit in which the source resistance vary over a certain range, *R_i* should be much greater than the largest value of Rs.
- An ideal voltage amplifier is one with $R_i = \infty$. In this ideal case both the current gain and power gain become infinite
- The overall voltage gain (A = vo/vs) is obtained by combining Equation (2) and Equation (3) as shown in Equation (4)

$$\frac{V_o}{V_s} = A_{V_v o} \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o}$$

$$v_i = v_s \frac{R_i}{R_i + R_s} \tag{3}$$

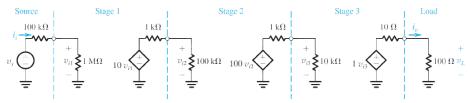
- Equation (3) shows that in order not to lose a much of the input signal in coupling the signal source to the amplifier input, the input resistance R_i must be much greater than the resistance of the signal source R_s , i.e., $Ri \gg R_s$
- When designing an amplifier circuit in which the source resistance vary over a certain range, *R_i* should be much greater than the largest value of Rs.
- An ideal voltage amplifier is one with $R_i = \infty$. In this ideal case both the current gain and power gain become infinite
- The overall voltage gain (A = vo/vs) is obtained by combining Equation (2) and Equation (3) as shown in Equation (4)

$$\frac{V_o}{V_s} = A_{V_v o} \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o}$$

$$v_i = v_s \frac{R_i}{R_i + R_s} \tag{3}$$

- Equation (3) shows that in order not to lose a much of the input signal in coupling the signal source to the amplifier input, the input resistance R_i must be much greater than the resistance of the signal source R_s , i.e., $Ri \gg R_s$
- When designing an amplifier circuit in which the source resistance vary over a certain range, *R_i* should be much greater than the largest value of Rs.
- An ideal voltage amplifier is one with $R_i = \infty$. In this ideal case both the current gain and power gain become infinite
- The overall voltage gain (A = vo/vs) is obtained by combining Equation (2) and Equation (3) as shown in Equation (4)

$$rac{V_o}{V_s} = A_{V_vo}rac{R_i}{R_i+R_s}\cdotrac{R_L}{R_L+R_o}$$


$$v_i = v_s \frac{R_i}{R_i + R_s} \tag{3}$$

- Equation (3) shows that in order not to lose a much of the input signal in coupling the signal source to the amplifier input, the input resistance R_i must be much greater than the resistance of the signal source R_s , i.e., $Ri \gg R_s$
- When designing an amplifier circuit in which the source resistance vary over a certain range, *R_i* should be much greater than the largest value of Rs.
- An ideal voltage amplifier is one with $R_i = \infty$. In this ideal case both the current gain and power gain become infinite
- The overall voltage gain (A = vo/vs) is obtained by combining Equation (2) and Equation (3) as shown in Equation (4)

$$\frac{V_o}{V_s} = A_{V_v o} \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o}$$
(4)

Cascaded amplifiers

- Real amplifiers are not ideal and they do not have infinite input impedance or zero output impedance.
- Cascading of amplifiers is used to solve this (Fig. 4).
 - First amplifier high R_i, medium R_o
 - **Last amplifier** medium R_i , low R_o
 - **Aggregate** —high R_i , low R_o

FIG 4. Three-stage amplifier

The first stage has a large input resistance ($R_i = 1M\Omega$). The second stage achieves the required voltage gain. The final stage functions as a buffer amplifier, providing a relatively large input resistance and a low output resistance, much lower than R_L . It is this stage that enables connecting the amplifier to the 100 load.

The end